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For finite element analyses within highly elastic and plastic structural do-
mains, hexahedral meshes have historically offered some benefits over tetra-
hedral finite element meshes in terms of reduced error, smaller element counts,
and improved reliability. However, hexahedral finite element mesh generation
continues to be difficult to perform and automate, with hexahedral mesh gen-
eration taking several orders of magnitude longer than current tetrahedral
mesh generators to complete. Thus, developing a better understanding of the
underlying constraints that make hexahedral meshing difficult could result in
dramatic reductions in the amount of time necessary to prepare a hexahe-
dral finite element model for analysis. In this paper, we present a survey of
constraints associated with hexahedral meshes (i.e. the conditions that must
be satisfied to produce a hexahedral mesh). In presenting our formulation
of these constraints, we will utilize the dual of a hexahedral mesh. We also
discuss how incorporation of these constraints into existing hexahedral mesh
generation algorithms could be utilized to extend the class of geometries to
which these algorithms apply. We also describe a list of open problems in hex-
ahedral mesh generation and give some context for future efforts in addressing
these problems.

1 INTRODUCTION

Numerical approximation methods, including finite element, finite difference,
and finite volume methods, are mathematical techniques used to model var-
ious scientific and engineering phenomena for a wide variety of disciplines,
including structural mechanics, dynamics, heat transfer, and fluid dynamics.
Because of the flexibility of these approximation methods, the problems to
which they can be applied is growing. They are currently being utilized in
fields ranging in diversity from cellular microbiology and quantum chromody-
namics to star and galaxy formation studies [29, 33, 30]).
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An important requirement of the numerical approximation techniques
above is the need to create a discrete decomposition of the model geome-
try into a ‘mesh’. The meshes produced are used as input for computational
simulation, as well as, the geometric basis for which many of the visualization
results are displayed.

The most common types of elements utilized in numerical approximations
are triangles or quadrilaterals in two-dimensions and tetrahedral or hexahe-
dral elements in three-dimensions. To reduce the amount of time to prepare a
model, automated meshing algorithms have been developed for creating tri-
angular, quadrilateral, and tetrahedral meshes for a very generalized class of
geometries. In the case of tetrahedral meshing, algorithms are available that
can generate greater than 400 thousand tetrahedra per minute [27]. How-
ever, automated hexahedral mesh generation algorithms are available for a
more limited class of geometries. Because of the limited class of geometries
for which hexahedral meshes can be built, a significant amount of time in gen-
erating a hexahedral mesh is devoted to decomposing (cutting up) a model
into pieces for which a known hexahedral mesh generation algorithm will suc-
ceed. The processing of geometry for creating a hexahedral mesh can take
several months for a generalized model, whereas tetrahedral meshes can often
be created in a matter of hours or days [68, 69].

In spite of the limited availability of an automated hexahedral mesh gener-
ation algorithm, hexahedral meshes are sometimes preferred over tetrahedral
meshes in certain applications and situations for the following reasons:

1. Tetrahedral meshes typically require 4-10 times more elements than a
hexahedral mesh to obtain the same level of accuracy [65, 12].

2. In some types of numerical approximations (i.e. high deformation struc-
tural finite element analysis with linear elements), tetrahedral elements
will be mathematically ‘stiffer’ due to a reduced number of degrees of
freedom associated with a tetrahedral element [2, 10]. This problem is
also known as ‘tet-locking’.

Hexahedral mesh generation can be difficult and time-consuming. In this
paper, we focus on delineating the underlying criteria that must be satisfied
(i.e. constraints) in order to produce a hexahedral mesh for a given geometric
model. This paper is intended to survey existing methods and ideas in hex-
ahedral mesh generation and provide some basis for future research. In the
remainder of this paper, we give a brief overview of hexahedral mesh genera-
tion, specifically in relation to the dual representation of a hexahedral mesh.
Then, we outline topologic, boundary, and quality constraints that must be
satisfied to generate a hexahedral mesh. We also give background on several
methods that may be utilized to satisfy specific hexahedral constraints to
capture spatial features within a hexahedral mesh. We conclude the paper by
highlighting how incorporation of additional constraint satisfaction methods
into existing algorithms can dramatically extend the class of geometries to



Hexahedral Mesh Generation Constraints 3

which these algorithms apply. We also identify several open problems in hexa-
hedral mesh generation, and give some context for how these solutions might
be addressed in future research.

2 BACKGROUND

Numerous algorithms exist for producing hexahedral meshes [41]. However,
no one algorithm is completely successful at generating provably correct and
robust hexahedral meshes. The most basic form of a hexahedral mesh gen-
eration algorithm stems from the mesh of a cuboid (i.e. subdivisions of a
single hexahedral element). For complex geometries, meshes can be obtained
by decomposing the initial geometry into collection of cuboids. For geometries
that are encountered frequently, common decompositions can be retained, or
stored, as a ‘primitive’ decomposition, and when the common shape is en-
countered again, meshing can be nearly automatic [7].

2.1 The Dual of a Hexahedral Mesh

Because decomposition of a model into cuboids and/or primitive shapes can
be tedious, complex, and difficult to automate, alternative algorithms have
been sought that do not require geometric decomposition.

In late 1993, hexahedral mesh generation was posed as a topological prob-
lem by Thurston [61] and Murdoch [39, 40]. They realized that utilizing the
dual subdivision of a hexahedral mesh yields a structure of internal surfaces
(also known as ‘sheets’), where the structure of the sheets dictates the struc-
ture of the hexahedral mesh (and vice versa) according to some specific topo-
logical requirements.

For a given quadrilateral mesh on a surface, the topologic structure of
the dual of the mesh can be visualized by drawing a line segment across
each quadrilateral connecting opposite edges. For each quadrilateral, there
are two such line segments, one for each of the opposite pairs of edges on a
quadrilateral element. The intersection point of these two segments (which
has been termed a ‘centroid’) is dual to the quadrilateral itself. By iteratively
placing the dual line segments for each quadrilateral in the surface mesh, it
is soon realized that each of the line segments from a quadrilateral connect
neighbor to neighbor until the line segments form either a closed curve, or the
resulting curve has end points at the surface boundary. Each of these dual
curves is called a ‘chord’ in the quadrilateral mesh. An example of a mesh
(also known as the ‘primal’), with its dual, is shown in Figure 1.

Several important items can be gleaned from the dual representation of
the quadrilateral mesh:

1. The intersection point of two chords is known as a ‘centroid’, and a cen-
troid is dual to a quadrilateral in primal space.
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Fig. 1. A quadrilateral mesh on a circular disk (left). The dual of a quadrilateral
mesh is created by line segments (chords) connecting opposite edges of an individual
quad, and traversing all of the edges of all of the quads on the mesh (middle). The
intersection of two chords is called a centroid and is dual to a quadrilateral. The
complete dual is on the right.

2. Each chord represents a ‘stack’ of quadrilaterals in the primal mesh.
3. All chords must either have endpoints on the boundary of the surface, or

they must form a closed curve within the boundary of the surface. (i.e.
there is no chord with an endpoint in the interior of the surface.)

4. Chords cannot be tangent to other chords.
5. The ‘size’ of the primal mesh and the number of elements local to an area

of the surface is a function of the density of chords and chord intersections
relative to that locale on the surface.

6. As a consequence of observation three above, it can be shown that the
parity of the edges around a surface admitting a quadrilateral mesh must
be even.

Extending these observations of quadrilateral meshes to hexahedral meshes,
we can formulate the dual of a hexahedral mesh. Since each hexahedral ele-
ment will consists of three pairs of opposing quadrilaterals (similar to the two
opposing edges for quadrilateral elements), we can draw line segments between
the centers of each of the opposing faces of the hexahedra. We observe that,
in similar fashion to the chords of a quadrilateral mesh, the chords within a
hexahedral mesh define a stack of hexahedra. However, we also observe that
these stacks now interact in two directions resulting in ‘layers’ of elements. A
layer of elements corresponds to a surface in the dual space of the mesh. This
dual surface has been referred to as a ‘sheet’ [34], an ‘interior surface’ [15], or
as a ‘twist plane’ [40, 39]. For the purposes of this paper, we will utilize the
term ‘sheet’ to apply to these dual surfaces. An example dual subdivision of
a hexahedral mesh is shown in Figure 2.

Reviewing a valid hexahedral mesh with its’ dual subdivision, the following
observations can be made:
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Fig. 2. Example of a cylinder meshed with hexahedra (left). The picture in the
middle shows the hex mesh with its dual subdivision in red. The sheets of the mesh
are shown on the right.

1. Only three sheets can intersect at a single point. The intersection point
of three sheets has been identified as a ‘centroid’ [39]. A centroid is dual
to a single hexahedron in primal mesh.

2. Each sheet in the dual space represents a ‘layer’ of hexahedral elements
in the primal mesh.

3. All sheets either form a closed shell within the mesh space, or have termi-
nating edges around the boundary of the mesh (i.e. there is no sheet that
terminates in the interior of the hexahedral mesh.)

4. Sheets cannot be tangent to other sheets.
5. The ‘size’ of the primal mesh and the number of elements local to an

area of the surface is a function of the density of sheets and the triple
intersections of sheets relative to that locale within the mesh.

Utilizing these observations along with theorems of topology, Thurston
theorized [61] that for a given solid, any quadrilateral mesh composed of an
even number of quadrilaterals should admit a compatible hexahedral mesh
within the solid. This theory was later proved by Mitchell in [34], and shown
to have linear complexity by Eppstein in [15]. These proofs, however, have
not resulted in any practical algorithms for generating hexahedral meshes in
an arbitrary solid suitable for analytic use.

While it is true that, topologically speaking, any solid on whose boundary
contains a quadrilateral mesh with even parity will admit a compatible hex-
ahedral mesh, there must also exist some geometric and quality requirements
that must be satisfied to enable a hexahedral mesh to be usable for analytic
methods, such as finite element analysis.

3 METHODS

In this section, we explore and derive some of the criteria which must be
satisfied (i.e. constraints) for generating a hexahedral mesh in an arbitrary
geometry. These constraints are identified using the dual structures of a hex-
ahedral mesh which were outlined earlier. Specifically, we will be looking at
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the topology and geometry of the hexahedral sheets both interior to a solid,
as well as at the boundary of a geometry. By understanding these constraints,
we can propose possible extensions to existing algorithms, along with new
approaches, to enhance the class of geometries for which existing hexahedral
meshing algorithms are applicable. In the last part of this section we will
also highlight some algorithms that may be utilized to satisfy some additional
hexahedral constraints within an existing mesh.

3.1 Hexahedral Mesh Constraints

Topological Constraints

In delineating the topological requirements of a hexahedral mesh, we will uti-
lize the constraints given by Mitchell in his proof of hexahedral mesh existence
[34]. While his proof started by considering a solid homeomorphic to a ball
with an even-parity quadrilateral mesh on the boundary, it should be recog-
nized that the constraints given will also apply to any arrangement of sheets
within a solid where no boundary mesh on that solid has been specified. That
is, if we start with an arrangement of sheets and place these sheets interior
to a solid, the topological constraints enumerated below will still hold with
only minor concessions to incorporate the boundary of the solid that does not
contain a quadrilateral mesh. The requirements for sheets near the geometric
boundary will be discussed in the next section.

Before outlining the topological constraints, we will define additional
needed terminology. First, let us clarify our definition of a sheet to be the
following: For a given problem domain in <3 (where the boundary of the
space is defined by the boundary of the solid(s) to be meshed), a sheet is a
manifold surface in <3. A sheet manifold may be either orientable or non-
orientable (Schwartz and Ziegler recently demonstrated an embedded mesh
containing a non-orientable sheet [49]). Because the sheet is a manifold in the
space, the sheet must either be closed within the boundary of the mesh space
or the boundary of the sheet must coincide with the boundary of the mesh
space. A collection of sheets will intersect to form various cell complexes. The
sheets are restricted in their intersections with other sheets such that the re-
sulting cell complexes are dual to a hexahedral mesh. The following collection
of sub-entities will be found in the resulting cell complexes, defined as follows
(see also Figure 3):

• A centroid (i.e. a 0D element) occurs at the intersection (local) of three
sheets. (It is possible that a single sheet may self-intersect, such that a
single sheet is effectively two (or even all three) of the local sheets needed
to form a centroid.)

• A chord (i.e. a 1D element) is produced along the intersection (local) of
two sheets.
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• A 2-cell (i.e. a 2D element) is a polytope on a sheet resulting from an
intersection with one, or more, other sheets, where the polytope boundary
are the chords produced by the sheet intersection.

• A 3-cell (i.e. a 3D element) is a volumetric polytope resulting from the
division of the original space by one, or more, sheets, where the boundary
of the 3-cell are the 2-cells enclosing the sub-space.

Fig. 3. Entities in the Dual

Utilizing the above definitions, Mitchell outlined [34] the topological re-
quirements for a given arrangement of sheets to produce a hex mesh as follows:

1. Each internal 2-cell is contained in exactly two distinct 3-cells.
2. Each face contains at least one lower dimensional face (excepting cen-

troids).
3. Each chord segment must contain two distinct centroids.
4. Every internal cell contains at most one surface cell of one lower dimension.
5. Each internal chord segment must be contained in exactly four distinct

2-cells.
6. Each centroid is contained in six chord segments. Note, also, that each

chord segment at a centroid is paired with another chord segment belong-
ing to the same chord.

7. Two 3-cells have, at most, one 2-cell in common.

When any of the conditions above are violated, the result will be either a
degeneracy or void regions in the resulting hexahedral mesh. Proofs for each
individual requirement can be found in [34].
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For purposes of aiding the reader’s intuition, these constraints can, in most
cases, be viewed as:

1. Only three sheets can intersect at any given centroid.
2. Sheets cannot be tangent with another sheet.
3. Sheets must span the space, or form a closed surface within the space (i.e.

the boundary of the sheet must either coincide with the boundary of the
space being meshed, or form a closed manifold within the space.)

4. When traversing the centroids along a single chord, consecutive instances
of a single centroid are not permitted (i.e. for the six quadrilaterals of a
hexahedron, any two of the six quadrilaterals may not be identical.)

Boundary Constraints

The topological constraints outlined above do not address some of the com-
plexities near the geometric boundary of the space or solid. In this section,
we make several observations regarding the geometric boundary of solids and
formulate the additional requirements necessary to ensure compatibility of the
interior sheets with the geometric boundary of a space or solid geometry.

For clarity, we need to define what is meant by a solid geometry. A solid
geometry consists of five main entity types, namely vertices, curves, surfaces,
solids (or volumes), and collections of volumes (these may be referred to as
an ‘assembly’). These entities are often arranged in a hierarchical structure,
as shown in Table 1. This hierarchical structure is often referred to as the
topology of the solid geometry. (Please note the distinction between the mesh
topology and the geometric topology of the solid.) The solid geometry defines
the space which will be discretized into a mesh.

While there may be special cases to the hierarchy shown in the table (i.e.
curves without endpoints, surfaces without curves, surfaces with zero area,
etc.), most of these special cases can be ignored, or remedied by introduc-
ing the necessary entities to match the definitions shown in the table and
minimally affecting the solid geometry representation.

Geometric Entity Bounding Entities

Vertex None
Curve Two Vertices
Surface One or more Curves
Volume One or more Surfaces

Table 1. Hierarchical arrangement of geometric entities.

Understanding the interaction between these entity types is important
to understanding how the boundary constraints on hexahedral meshes help
to capture the geometric entities. For instance, in order to mesh a surface,
the mesh topology of the surface must somehow incorporate the curves and
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vertices ‘owned’ by that surface. For many solid geometries, it may be easy
to capture the geometric shape of the object, but very difficult to capture the
geometric topology of the object.

One other important distinction is the difference between mesh entities
and geometric entities. We will utilize the following terminology, shown in
Table 2, in order to distinguish between mesh entities and geometric entities.
From this table, we can also note the hierarchical relationship inherent in the
mesh entities, which is similar to the relationship between geometric entities
noted earlier.

Dimensionality Geometric Entity Mesh Entity

0D Vertex Node
1D Curve Edge
2D Surface Quadrilateral (or Triangle, etc.)
3D Volume Hexahedron (or Tetrahedron, etc.)

Table 2. Relationships between geometric entities and mesh entities.

It is also possible to construct a table (Table 3) indicating entity corre-
spondence between the dual and primal spaces for hexahedral meshes.

Primal Entity Dimension Dual Entity Dimension

Hex 3 Centroid 0
Quad 2 Chord 1
Edge 1 2-Cell 2
Node 0 3-Cell 3

Table 3. Conversions between dual and primal entities.

Geometric Surface Constraints

A couple of key observations can be made from Table 3. First, note that a
chord is dual to a quadrilateral. Since chords were drawn between centers of
hexahedra, the chord between two centroids was dual to the quad shared by
these two hexahedra. In some sense, the chord can be viewed as an approxi-
mation to the normal of the quadrilateral between two hexes.

Observation 1:

The boundary of any hexahedral mesh is a quadrilateral mesh.
To improve the quality of the mesh at the boundary of our geometry, it

is desireable to align the chords with the local surface normals. Doing this
promotes higher quality hexahedral elements on the boundary of the mesh.
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Boundary Constraint 1:

For each surface of a hexahedrally meshed solid, there exists a set of sheet
patches, which are geometrically similar (i.e. similar in shape) to the surface,
but offset a distance that is a function of the size of the mesh local to that
boundary (i.e. the local chord length). The minimal number of sheets to which
the collection of sheet patches might belong is a single sheet.

Justification:

Given a hexahedral mesh and utilizing Observation 1, select a quadrilateral
on the boundary. This quadrilateral is dual to a chord that is found at the
intersection of two sheets whose boundary are the two chords intersecting the
quadrilateral on the boundary. Since the boundary quadrilateral is contained
in only one hexahedral element of the mesh, there must be a third sheet that
intersects the other two creating the centroid that is dual to the hex. On this
third sheet, there is an area within the sheet that can be said to correspond
directly with the quadrilateral on the boundary. This area of the sheet is also
geometrically similar in shape to the quadrilateral, although offset a distance
based on the size of the hexahedron to which the sheet and quadrilateral
correspond. A collection of contiguous areas on a single sheet corresponding
to a set of quadrilaterals on the boundary will be defined as a ‘sheet patch’.
The collection of ‘sheet patches’ corresponding to all quadrilaterals on the
surface boundary is geometrically similar to the boundary surface. (see Figure
4). Also notice that the minimal number of sheets to which this collection of
patches might belong is a single sheet.

Fig. 4. Image showing how a sheet captures the geometric boundary. The picture
on the right shows a single sheet capturing the cylindrical surface, while the picture
on the left (of a different mesh) shows the same surface being captured with multiple
sheets.
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This poses an immediate question: Is it better to capture a boundary
surface with a single sheet, or with multiple sheet patches? For the majority
of cases, the answer to this question is that single sheets for capturing a surface
are better than multiple sheet patches. The reasoning for this is due to the
irregularities introduced whenever a sheet is diverted away from a surface.
When partial sheets are utilized to capture a surface, the area of the sheet
where the transition occurs results in increased nodal valence in the mesh,
skewing of the elements (caused by the sheet curvature), and in some cases
the formation of adjacent hexahedron that contain faces sharing two or more
edges (also known as a ‘doublet’ and will be described in more detail later
in the paper). Figure 5 shows several examples of the transition elements
resulting from partial sheets capturing boundary surfaces. Therefore, in most
cases, the use of a single sheet to capture boundary surfaces is preferred.

Fig. 5. When partial sheets capture boundaries, the quality and regularity of the
mesh is affected. Image A shows elements from a single sheet capturing the upper
boundary of the solid. Image B and C use patches from two sheets to capture the
upper boundary of the solid. In Image B and C, note how the regularity of the
mesh is affected, and the resulting skew in the transition element due to the sheet
curvature away from the boundary. In Image C, a near doublet element is formed
due to the low curvature of the boundary being captured.

Geometric Curve Constraints

Boundary Constraint 2:

For each curve on a hexahedrally meshed solid, there exists a set of sheet
patch pairs such that the lines of intersection between each of the patch pairs
is a piecewise approximation of the curve, only offset a distance, which is a
function of the mesh sizes local to the curve.

Justification:

From our description of curves in solid geometry, a curve in the solid is the
boundary between two surfaces on the solid. From Boundary Constraint 1,
there exists a collection of sheet patches local to the curve that are geometri-
cally similar to each of the surfaces. The lines of intersection of two sets sheet
patches are a set of chord segments that are geometrically similar to the curve
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at the boundary between the two surfaces, and that are offset a distance which
is a function of the mesh size in the boundary curve’s locale (see Figure 6):

Fig. 6. Capturing a curve utilizing an offset chord (from the intersection of two
sheets).

Geometric Vertex Constraints

Boundary Constraint 3:

There exists at least one triple-sheet pairing that corresponds to each vertex
on the boundary. This triple-sheet pair is equivalent to a centroid, and is offset
a distance related to the mesh size local to the vertex.

Justification:

Any vertex on the boundary of the solid must contain one mesh node in order
for the mesh to be compatible with the solid. Since a node is dual to a 3-cell,
and the simplest 3-cell is formed at the intersection of three sheets with the
boundary of the solid. Therefore, there exists at least one-triple sheet pairing
that corresponds to each vertex on the boundary.

Some additional insights may help better understand geometric vertex
constraints. Because a node is at the corner of each hexahedral element, we
can also draw relationships for each vertex to a set of centroids. Because every
node is contained in at least one hexahedral element, there must exist at least
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one centroid that is offset a distance related to the mesh size local to the
vertex (the intersection of the triple-sheet pair is the centroid corresponding
to the vertex in the simplest case). However, there is a complicating difference
with vertices, in that it is not necessary for a vertex to correspond to a single
centroid. Rather, a vertex may correspond to many centroids within a single
solid.

We can re-write this observation in terms of sheets, such that, for each cen-
troid, there exist a local, triple-set of sheets whose intersection form a centroid
that corresponds to a vertex. However, because a vertex on the boundary can
correspond to one or more centroids, there will be cases when this vertex will
correspond to more than one triple-sheet pairing. A few examples are shown
in Figure 7.

Fig. 7. At least three sheets are necessary to capture a geometric vertex in a given
mesh topology (A). However, more than one triple-pair of sheets is not exclusive for
each vertex. For geometric vertices whose valence is higher than three, more than one
triple pair is necessary to capture all of the geometric features related to the vertex.
A four-sided pyramid (B) requires four sheets (creating two distinct centroids, or
two triple-pairs) and a five-sided pyramid (C) requires five sheets (creating three
distinct centroids, or three triple-pairs) to succinctly capture the geometric features
associated with the vertex. In (B), there are two red sheets, one green, and one
yellow shown. In (C), there are two red, two green and one yellow sheet shown.

In this case, utilizing the sheets in meeting this constraint is helpful instead
of the centroids because there are usually geometric curves emanating from
each of the vertices. The sheets utilized to capture the geometric surfaces and
curves will also be the same sheets which capture the vertices. The convergence
of many sheets around some vertices must be handled with care to maintain
the topological constraints local to a vertex (i.e. only three sheets can intersect
at a single point, etc.).
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Geometric, or Quality, Constraints

Specifying constraints in relation to the quality of the mesh is often difficult
because a complete understanding of how mesh quality affects analysis error
is largely unknown, specifically with hexahedral meshes. While there has been
some recent work in this area [53, 22], the only consistent constraint placed on
hexahedral mesh generation is that the (scaled) Jacobian of each mesh element
must be positive (i.e. non-inverted). In this section, we will demonstrate how
the Jacobian for a hexahedral mesh is defined, and we will consider how the
geometric properties of a sheet affect the overall quality of the resulting hex
mesh, while the ultimate goal will be to determine the necessary conditions on
a sheet to have a resulting non-inverted mesh. We will begin by first discussing
the sheets relating to the ideal mesh as developed for finite elements, and then
by discussing how geometric and topological modifications to the ideal sheets
change the underlying quality of the resulting hexahedral meshes.

Quality Considerations

In terms of hexahedra, the ideal element for which finite element basis func-
tions are formulated is a cube of six quadrilaterals of equal area, with edges
of equal length, and which are mutually orthogonal to each other. Such cubes
are easily subdivided by dividing each edge by two and each quadrilateral into
four smaller, but mutually equivalent quadrilaterals. The arrangement of the
sheets in dual space for such an ideal mesh is simply a collection of Cartesian
planes which subdivide the mesh as described earlier in the dual construction
of a mesh (see Figure 8).

Fig. 8. The ideal mesh (left) with the induced sheet arrangements at two differ-
ent mesh sizes (the sheet arrangement on the right is twice as dense as the sheet
arrangement in the middle).

Utilizing the ideal mesh as our goal, the following constraints can be added:

1. Maximize orthogonality in the sheet topology - From the topologi-
cal constraints earlier, we know that at most three sheets can intersect at a
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single point. From the ideal mesh, it is apparent that a perfectly orthogo-
nal intersection of the three sheets is desired. Deviations from orthogonal
intersections of the sheets will produce ‘skewing’ of the hexahedral ele-
ments in the mesh. (see Figure 9).

Fig. 9. As sheet intersections deviate from orthogonality, the skew of the mesh
increases.

2. Minimize sheet curvature - The ideal isotropic mesh contains perfectly
planar sheets. Therefore, it is desireable for the local curvature of a sheet
to be as minimal as possible. Curvature of the sheets causes ‘keystoning’
of the elements, where the length of one edge is substantially different
than it’s opposite edge. This phenomenon can be readily seen in Figure
10, as we increase the curvature of a single sheet of elements.

3. Maximize the topologic regularity of the sheets - The regular topo-
logical arrangement of the sheets, as shown in the ideal mesh, is also
desirable (and is essentially required in finite difference calculations). In
finite element methods this requirement has some flexibility, but mainte-
nance of this regular topology, where possible, has some additional benefits
from several algorithmic standpoints including element numbering, matrix
formulation, compression, etc. Additionally, non-regular arrangements of
sheets have a tendency to interfere with the optimization of constraints 1
and 2 above.

4. Sheet density controls element sizing - Element sizing information
is determined directionally as a function of the local density of the sheets
in an area. To increase the element size in one direction, decrease the
density of locally parallel arrangement of sheets. Except in a few cases
(for example, boundary layers in fluid flow), a dramatic transition in the
density of sheets is undesirable (see Figure 11).

Mesh Untangling

Before proceeding further, it will be helpful to introduce the idea of mesh
untangling as developed by Knupp, et al. [21]. The Jacobian matrix is calcu-
lated for each node with respect to a hexahedral element. For each node in
a hex, there are exactly three ‘neighbor’ nodes connected via an edge in the
hexahedra. For a single node of a hexahedra, the Jacobian matrix is defined
as:



16 Jason F. Shepherd and Chris R. Johnson

Fig. 10. Increasing the curvature of a single sheet results in ‘keystoning’ of elements
where one edge shrinks in size while the other grows as the curvature of the sheet
increases.

Fig. 11. Note that as the sheet density increases in one direction only, the element
aspect ratio increases as can be seen in this figure.
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A0 =

∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣
For a single hex, there will be eight such matrices (for additional dis-

cussion on elements with multiple Jacobian matrices see [22]. The minimal
determinant of these eight matrices is known as the ‘Jacobian’ of the hexa-
hedral element. By allowing nodal movement for each of these elements, an
optimization problem can be formulated to maximize the following objective
function (other similar functions have also been utilized):

f(A) = 0.5 ∗
∑

(|αm| − αm)

where αm is the determinant a single Jacobian for a mesh with m elements.
If the mesh is untangled, then the summation reaches a maximum value of

zero. For a hexahedral mesh, this can be a difficult optimization. It is common
to use local optimization algorithms, such as conjugate gradient methods, to
obtain a solution to the untangling optimization problem. However, because
the untangling problem is non-convex, it is possible to reach a local maxima
without obtaining an optimal solution. This is an ongoing and challenging
research area [21, 62, 23, 17]. It is undetermined whether a mesh that satisfies
the topological requirements cited earlier can always be untangled, although
it is believed that there are meshes that do not have an untangled solution.

Additional Quality Observations

The quality of a hexahedral mesh, as determined from its dual subdivision, is
largely unexplored. From the quality considerations enumerated earlier, it is
known that there exists a correlation between the conformation of the sheet
and the ultimate quality of the hexahedral mesh. Specifically, high curvature
of the sheet is a necessary condition to creating an inverted hexahedral ele-
ment, however, as shown earlier, high curvature of the sheet is not a sufficient
condition to guarantee that elements will become inverted. We list some case
studies that may be of value in determining the additional sufficient conditions
resulting in poor quality hexahedral meshes.

• Low sheet curvature is important for high quality - Figure 12 shows a sheet
from a volume that was meshed via the whisker weaving algorithm [16]. At
the base of the trough in this sheet is a collection of inverted elements that
are currently untangle-able [21, 62]. Mesh smoothing can only improve the
sheet conformation in a limited fashion because of the fixed mesh topology
the smoothing algorithms must maintain while adjusting the conformation
of one sheet with the surrounding sheets. Some efforts involving mesh
topology reconfiguration (for instance, mesh-flipping [3, 4, 58]) may aid
our ability to untangle these meshes by relaxing the fixed topology of the
mesh enabling sheet conformations with lower curvature to be obtained.
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Fig. 12. Two views of a sheet with a high curvature trough in a solid. The high
curvature at the trough of the sheet shown corresponds to hex elements that cannot
be untangled in the resulting mesh.

• The surface mesh is important for high quality - The boundary of a non-
closed sheet in a hexahedral mesh is defined by a dual cycle of chords in
the quadrilateral mesh on the boundary. Some of the dual cycles defined
by quadrilateral meshes imply complex geometric definitions for any re-
sulting sheet corresponding to the defined dual cycle boundary. One such
boundary is shown in Figure 13, where the dual cycle wraps around it-
self several times in one area of the solid. Obvious high curvature in the
sheets and coarse interactions between adjacent sheets, results in a mesh
for which an untangled solution is not currently known.

• The mesh approximates the sheet - Recent work done by Suzuki, et al.
[56] has explicitly defined the sheets interior to a solid. By generating an
interior surface for the dual cycle of Schneider’s pyramid [48] and subse-
quently satisfying all necessary topological constraints for a hex mesh, it
was determined that a reasonable quality mesh would result. However, the
resulting mesh had elements that were untangle-able. Because the sheet
was defined geometrically prior to creating the mesh, we can compare the
sheet defined by the hex elements with the sheet created by the authors.
The differences between the two are significant and the sheet defined by
the mesh is a very rough approximation of the desired interior surface (see
Figure 14. Increasing the number of elements can dramatically improve
some areas of quality, but all of resulting meshes do not have a known
untangled solution.

These case studies indicate that there is still a great deal of information
that is not currently understood with regards to generation of quality (or, at
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Fig. 13. The surface mesh (shown on the left) has a dual cycle that spirals up to the
top of the image. The resulting hex mesh, generated with WhiskerWeaving, cannot
be untangled. The sheet generated by WhiskerWeaving is shown on the right.

Fig. 14. The boundary and interior surface, shown in (A), correspond to the bound-
ary and an interior surface for Schneider’s pyramid [48]. The resulting hex mesh has
a sheet (B) which approximates the surface in (A), but the facets tend to flatten
the intended sheet conformation. By increasing the resolution (via dicing [32]) the
approximation of the surface is better and has fewer regions of negative Jacobian
elements (some negative Jacobian elements are shown in the image).
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least, non-inverted) hexahedral meshes. We know that high sheet curvature
is necessary for producing inverted elements, but it is not sufficient. There
are obviously some additional sufficient conditions, respect to how multiple
sheets with high curvature interact with each other in order to produce sets
of inverted elements.

3.2 Constraint-satisfying Methods

Over the years, several methods have been developed that make it possible to
improve the flexibility of existing hexahedral meshing algorithms and aid in
capturing constraints overlooked by the paradigm employed by a specific algo-
rithm. In this section, we highlight some of these methods and show how they
help to satisfy some of the fundamental constraints for hexahedral meshing of
solid models. In particular, we discuss methods for inserting and extracting
sheets in existing mesh topologies. The methods we highlight are pillowing
[37], dicing [32, 31], mesh-cutting [9], grafting [19], and sheet extraction [8].

Inserting Sheets

Pillowing

During the development of the whisker weaving algorithm [57, 16], Mitchell
et al. consistently encountered meshes where two neighboring hexes shared
two faces (or more basically, where two adjacent faces shared two edges).
Called a ‘doublet’ (see Figure 15), this situation is undesirable because of the
impossibility of moving the nodal locations in these elements such that both
elements have positive Jacobian determinant values. A simple, but powerful,
technique called ‘pillowing’ [37] was developed to locate and place a mesh
refinement that effectively removed the doublets from the mesh.

In terms of the dual of the mesh, pillowing is essentially a sheet insertion
operation, where a new sheet is inserted that effectively splits the doublet
hexes into multiple hexes, and eliminating the problematic mesh topology.

The pillowing method turns out to be powerful, not for it’s ability to
remove doublets, rather it provides a fairly straight-forward approach to insert
sheets into existing meshes. The sheets can be inserted utilizing the primal
elements of an existing mesh, and without explicitly creating a geometric
definition for the sheet and calculating the intersections with the other local
sheets in the space.

The basic pillowing algorithm is as follows:

1. Define a shrink set - For our purposes, this step involves dividing the
existing mesh into two sets of elements: one set for each of the half-spaces
defined by the sheet to be inserted. One of these two sets of hexahedral
elements comprises the shrink set. The choice of which one should be the
shrink set is arbitrary, although the best algorithmic choice will be the set
with the fewest number of elements.
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Fig. 15. A quadrilateral doublet, where two adjacent quadrilaterals share two edges.
Similar types of doublets occur in 3D with adjacent hexes sharing two or more
quadrilaterals. The scaled Jacobian for both elements, as shown, is zero, and while
node movement strategies can improve the Jacobian value for one of the two quadri-
laterals, simultaneous improvement of the Jacobian value for both quadrilaterals is
not possible.

Fig. 16. A basic pillowing operation starts with an initial mesh (A) from which a
subset of elements is defined to create a shrink set. The shrink set is separated from
the original mesh and ‘shrunk’ (B), and a new layer of elements (i.e. a dual sheet)
is inserted (C) to fill the void left by the shrinking process.

2. Shrink the shrink set - This step essentially creates a gap region between
the two previous element sets (see Figure 16. The difficulty in this step
involves splitting the shared nodes, edges, and quads in the existing mesh,
while maintaining the appropriate correspondence of the mesh entities
with the geometric topology.

3. Connect with a layer of elements - This step results in a fully-conformal
mesh with the new sheet inserted between the original two element sets.
To complete this step, an edge is inserted between each node that was
separated during the ‘shrinking’ operation. Utilizing the quadrilaterals on
the boundary between the two sets of hexes, along with these new edges, it
is fairly straight-forward to determine the connectivity of all of the hexes
in this new layer.

It is often desirable to perform a smoothing operation on the resulting
mesh after the new sheet has been inserted to obtain better nodal placement
and higher quality elements. The speed of the pillowing algorithm is largely
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dependent on the time needed to find the shrink set. The number of new hex-
ahedra created will be equal to the number of quadrilaterals on the boundary
of the shrink set.

A pillowing operation is nothing more than a sheet insertion operation
for an existing mesh. It is therefore a useful multi-purpose, foundational tool
for operations on hexahedral meshes, including doublet removal, refinement,
grafting, and mesh-cutting (grafting and mesh-cutting will be discussed in
upcoming sections.)

Dicing

The dicing algorithm [32, 31] was created to very efficiently generate very
large, refined meshes from existing coarse meshes. The dicing method is an
efficient tool for duplicating sheets multiple times within an existing mesh.
The generation of these very large, refined meshes is accomplished by copying
each of the existing sheets and placing them in a parallel configuration to the
sheet being copied. The basic method for dicing is as follows:

1. Define the sheet to be diced - An edge in a hexahedral mesh can only
correspond to a single sheet in the dual. Utilizing one edge, the opposite
edges of the hexahedron can be deduced as belonging to the same sheet
via the definition of the dual of the hexahedral mesh. It is then possible
to iterate until all of the edges associated with a single sheet in the dual
are found.

2. Dice the edges - With the list of edges found in the previous step, dicing
then splits (dices) all of these edges the specified number of times. If for
instance, we wish to copy the sheet one time, then each of the edges is
split once resulting in two new edges.

3. Form the new sheets - With each of the edges associated with the hex-
ahedral sheet split, we can again utilize the idea that an edge can be
associated with a single sheet in the mesh and form a new layer of hex-
ahedra for each split in the original set of edges, where the hexahedral
connectivity is similar to the original hexahedral layer before the edges
were split.

Utilizing the dicing method, the number of elements increases as the cube
of the dicing value. For instance, if an existing mesh is diced four times (i.e.
each of the sheets in the existing mesh is copied four times), the resulting mesh
would have 64X as many elements as the original mesh. Because all search
operations can be performed directly, the dicing algorithm can produce large
meshes at very efficient speeds (see Figure 17).

Geometric Capture with Sheets

Mesh Cutting

The mesh-cutting [9] method is an effective approach for capturing geometric
surfaces within an existing mesh topology. The mesh-cutting method utilizes
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Fig. 17. The original mesh (left) contains 1805 hex elements before dicing. Each
sheet in the original mesh is copied three times resulting in a mesh that is 33 larger,
with 48,735 hex elements.

the pillowing and dicing methods mentioned previously to insert two sheets
which are geometrically similar to the surface to be captured. By utilizing two
sheets, the result is a layer of quadrilaterals, shared by the hexes in the two
sheets, which can be viewed as a set of facets geometrically approximating
the surface. The mesh-cutting method entails the following steps:

Fig. 18. Mesh cutting utilizes an existing mesh and inserts new sheets to capture a
geometric surface(the existing mesh is shown in (A) where the red, spherical surface
is the surface to be captured.) The resulting mesh after mesh cutting is shown in
(B), with a close-up of the quadrilaterals on the captured surface being shown in
(C).

1. Define the pillowing shrink set - Utilizing the surface that is to be captured
in the mesh, we divide the existing mesh into two sets of elements. One of
these element sets will be the shrink set, and a sheet (pillow) is inserted
between the two sets of elements.

2. Dice the new sheet - We split the newly inserted sheet into two sheets
utilizing an approach similar to dicing.
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3. Move the shared quadrilaterals to the surface - With two new sheets de-
fined in the mesh topology, we can find all of the quadrilaterals that are
shared by the hexes between the two sheets. These quadrilaterals become
the mesh on the surface we are attempting to capture (see Figure 18).

A caveat with this method is that the existing mesh topology must be
fine enough to capture the detail of the surface to be inserted. Because the
resulting quadrilaterals only approximate the inserted surface, if the result-
ing quadrilateral mesh is too coarse, the surface may not be approximated
adequately enough to be resolved.

One other item to remember with this method is that since a geometric
surface is being utilized to define a sheet within the mesh space it may be
necessary to have the ability to extend the geometric surface in some fashion
such that it meets the requirements on a sheet that it divide the mesh space.
If the geometric surface is trimmed, for instance, the trimmed surface may
not adequately divide the space being meshed making it necessary to provide
a continuation to the surface definition to the boundary of the mesh space.

Grafting

The term ‘grafting’ is derived from the process of grafting a branch from
one tree into the stem, or trunk, of another tree. In meshing, the grafting
method was initially to be utilized for allowing a branch mesh to be inserted
into the linking surface of a previously hexahedrally swept volume [19]. The
grafting method would then offer a reasonably generalized approach to multi-
axis sweeping.

Grafting is a method that essentially captures geometric curves on previ-
ously meshed surfaces. Because the curve(s) already reside on a surface and
the existing mesh already captures that surface, it is possible to introduce a
second sheet to satisfy the curve constraint listed earlier. The introduction of
the new sheet will produce the necessary mesh topology to enable the mesh
to be compatible with the boundary curve(s). The method for creating a graft
(i.e. capturing the geometric curve) can be outlined as follows (see also Figure
19):

1. Create a pillowing shrink set - In the case of grafting, the shrink set is
typically defined as the set of hexes which have one quadrilateral owned
by the surface and which are interior to the closed set of curves (with
respect to the surface).

2. Insert the pillow (sheet) - By inserting the second sheet, we have essentially
satisfied the hexahedral constraint for capturing a geometric curve. That
is, we now have two sheets which generate a chord in the mesh that is offset
from the set of curves which were the input to the grafting algorithm.

At this point, there is often some database adjustments also necessary to
ensure that the new mesh entities are associated with the correct geometric
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Fig. 19. In grafting, a shrink set on a existing meshed volume is defined (A) and
a new sheet is inserted via a pillowing operation (B). Once the new sheet has been
inserted, the nodes are positioned along the curve to be captured via a smoothing
operation (C). Additional pillows can also be inserted to remove any doublet hexes
that may have been created (C). The resulting mesh topology captures the geometric
curve (D).

entities, but the curve is essentially captured when the second sheet is inserted
in conjunction with the initial set of sheets that captured the geometric sur-
face. A similar method can be used to capture a single curve, rather than a
set of curves, but it is still necessary that the sheet that is inserted to capture
the curve satisfy the definition of a sheet. That is, the sheet must completely
divide the mesh space into two regions.

There is one caveat with this method: Because there is no explicit steps
taken to capture the geometric vertices associated with each of the curves
being grafted, there is a requirement that the resolution of the trunk mesh
be fine enough to be able to capture all of the curve’s endpoints by moving
existing nodes in the final mesh to the vertex locations. The movement of the
nodes to the vertex locations must be done intelligently to avoid destroying
the required mesh topology necessary to correctly capture the curve. While
other sheets may be added to avoid this problem, the addition of more sheets
to capture the vertices may have the negative effect of locally refining the
mesh sizes and/or mesh topologies that are not as aesthetically pleasing as
may be desired.
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Removing Sheets

Sheet Extraction

One of the positive practical benefits about working with the sheets in hexahe-
dral meshing, is that all of the processes are easily reversible. Sheet extraction
is the inverse operation to a sheet insertion operation (i.e. pillowing or dicing).
A method for extracting a sheet is detailed in [8], where the basic steps can
be outlined as follows:

Fig. 20. Original mesh, shown on left, with 1805 hex elements. After removing
approximately half of the sheets in the original mesh, the resulting mesh (right) has
342 hex elements.

1. Define the sheet to be extracted - Because an edge in a hexahedral mesh
can only correspond to a single sheet in the dual, this step can be easily
accomplished by specifying a single edge in the mesh. From this single
edge, the primal mesh can be iteratively traversed to determine all of the
edges which correspond to the sheet to be extracted.

2. Collapse the edges - With the list of edges found in the previous step, the
nodes of each of the edges can be merged, effectively removing the sheet
from the mesh.

There are some special circumstances that must be avoided when extract-
ing sheets in order to avoid either degenerating the mesh or producing a mesh
which is no longer conformal with the geometric topology. These situations
can be avoided by checking to ensure that one of the edges to be collapsed is
not the only edge on a curve, or that the nodes in an edge are not owned by
different curves, etc.

4 SUMMARY AND APPLICATION OF
CONSTRAINTS

In this section, we summarize the hexahedral mesh generation constraints
detailed earlier and highlight how knowledge of these constraints might be
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utilized to enable faster, more robust, hexahedral mesh generation with exist-
ing algorithms.

4.1 Summary of Constraints

The constraints for hexahedral mesh generation as detailed earlier can be
summarized as follows:

• Topologic:
1. Only three sheets can intersect at any given centroid.
2. Sheets cannot be tangent with another sheet.
3. Sheets must span the space, or form a closed surface within the space.
4. When traversing the centroids along a single chord, consecutive in-

stances of a single centroid are not permitted.
• Boundary:

1. Each surface of the solid-to-be-meshed must have a set of sheet patches
which, collectively, are geometrically similar to the surface but offset
interior to the solid. The minimal number of sheets to which the col-
lection of patches might belong is a single sheet.

2. Each curve of the solid-to-be-meshed must have a set of chord patches
(resulting from the intersection of pairs of sheet patches) which, col-
lectively, are a piecewise approximation to the curve offset interior to
the solid.

3. Each vertex of the solid-to-be-meshed must have at least one triple-
sheet-pairing (i.e. centroid) which corresponds to the vertex on the
solid.

• Geometric or Quality:
1. Maximize the orthogonality of the sheet intersections.
2. Minimize curvature of the sheets.
3. Maximize a regular topologic arrangement of sheet intersections.
4. Maintain uniform density of sheets throughout the solid (with excep-

tions where mesh anisotropy is desired).

4.2 Application of Constraints

Owen [41] categorized the classes of hexahedral mesh generation algorithms
as follows: Mapped Meshing, Direct Methods, and Indirect Methods. In this
section, we briefly examine a few algorithms in each category and suggest
how better knowledge or incorporation of the constraints detailed above may
extend the class of geometries that the algorithm can successfully mesh.

Mapped Meshing

Mapped meshing algorithms include the octree approaches [47, 73, 50, 74],
mapping [13], multi-block [14, 72, 43, 1], submapping [66, 67], and sweeping
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algorithms [20, 54, 46, 26, 25, 52, 5]. These algorithms are also categorized
as structured, or semi-structured methods because of the regularity of the
meshes that they typically produce.

These methods work well for a well-defined set of geometric topologies.
For instance, mapping algorithms require geometric topologies conforming to
a cuboid (i.e. six square-ish surfaces composed of four curves each form the
boundary of the solid), and sweeping algorithms require cylindrical topologies.
Algorithms that automatically detect or enforce the pre-defined topologies
have significantly improved the time required to generate hexahedral meshes
[71, 35, 36, 51, 70].

The most popular, and commonly displayed, types of hexahedral meshes
are those utilizing a multiblock method for generating a hexahedral grid [72,
43, 1]. The major advantages of these methods are related to the size of the
meshes and relative speed with which large meshes can be constructed once the
block decompositions have been defined. An individual skilled in generating
multiblock-type grids can generate complex meshes with exceptional quality.
Because of the control that is available in the creation and layering of the mesh,
this method is the common choice for hexahedral decompositions in fluid
dynamic simulations where fine control of the mesh near geometric boundaries
is required.

The major disadvantage associated with these algorithms is their seeming
inflexibility to incorporate additional geometric topologies to the pre-defined
geometric topology written for the algorithm. Therefore, hexahedral meshing
of non-conforming geometric topologies results in decomposition of the solid
into the pre-defined topologies [7, 28, 59], suppression of incompatible topol-
ogy [24], pre-defined topology overlays (used extensively in multi-block meth-
ods), refinement [64], or massaging the elements to fit the geometry [63, 75].

With these algorithms, satisfaction of the boundary constraints is only
guaranteed if the geometric topology matches a pre-defined geometric topol-
ogy. Potentially, all of these algorithms could be augmented for larger-classes
of geometric topologies by enabling the algorithms to capture additional
boundary details. Mesh cutting and grafting algorithms have been utilized as
a post-meshing method to capture additional curves and surfaces in meshes
created by the structured methods cited above [9, 19]. It would also be possi-
ble to incorporate some additional paradigms directly into these methods that
allow the hexahedral boundary constraints to be satisfied during the course
of the initial mesh generation phase.

Direct Methods

The Direct Methods include the following classes of algorithms: grid-based,
medial axis, plastering and whisker weaving. The grid-based algorithms suf-
fer from the same boundary constraint problems identified in the structured
and semi-structured methods above. The medial-axis algorithms define de-
compositions of the volume into simpler primitives that can be meshed with
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a structured scheme. These methods ultimately have difficulty satisfying the
boundary constraints for a hexahedral mesh.

The Plastering [6] and Whisker Weaving [57, 16, 38, 11] algorithms both
start with a quadrilaterally meshed boundary, which effectively enables easy
satisfaction of the boundary constraints. However, because a boundary mesh
also defines the boundaries of the sheets that will be placed on the interior of
the volume, the pre-meshed boundaries are also the cause of the poor quality,
or subsequent failure of these algorithms. As was previously shown in Figure
13, it is quite common for quadrilateral meshes on the boundary to define
sheets with high geometric complexity. Assuming the algorithm is sophisti-
cated enough to solve the topologic requirements to define the sheets, the
interactions of these high curvature sheets often prevents reasonable quality
hexes from being realized.

Some success has been found by removing the problematic sheets with a
sheet extraction algorithm, or placing additional constraints on the quadrilat-
eral mesh placed on the boundary (in particular, Hannemann [38] was able to
generate some relatively complex hexahedral meshes by utilizing quadrangu-
lar patches and reasonably structured surface meshes as the input to a dual
creation algorithm.) However, the complexity of these algorithms often make
incorporation of sheet quality criteria difficult.

More recent approaches, that take into account a better understanding of
hexahedral constraints, offer a more realistic chance of success. The method
proposed by Staten, et al. [55] inserts sheets directly based on boundary def-
initions building on some of the paradigms advanced in the plastering and
H-morph [42] algorithms, but advancing entire sheets rather than single ele-
ments to avoid closure problems.

Indirect Methods

The Indirect Methods are methods that generate a hexahedral mesh by first
generating a tetrahedral mesh and then converting that mesh into a hexahe-
dral mesh by either combining the tetrahedra into hexahedra, or decomposing
the tetrahedra into hexahedra. Combining tetrahedra into hexahedra is ulti-
mately very similar to the plastering method, which we discussed previously.

Indirect Decomposition

The major advantage of tetrahedral decomposition into hexes that it is very
easy to satisfy the boundary and topologic constraints of hexahedral meshes.
The disadvantage of this method is that the decomposition produces sheets
that are small and spherical, resulting in relatively high curvature of all sheets
within the solid.

To augment an indirect decomposition algorithm, methods that reduce the
curvature of each of the sheets in the volume will improve the quality of the
existing mesh, and also reduce the high nodal valence that often accompany
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a tetrahedral mesh. Some ideas for accomplishing this could include combin-
ing adjacent sheets into single sheets, which elongates the sheets reducing
curvature and locally coarsening the mesh (i.e. combining two slightly offset
spheres produces an elliptical sheet). Iterative and strategic combinations of
sheets could ultimately produce a mesh whose sheets are much more planar
in nature, resulting in a higher quality mesh.

Another approach to this problem is to begin with a very coarse tetra-
hedral mesh, split each tetrahedra into four hexahedra, and then apply the
dicing algorithm to mesh (see [45, 44]). The resulting mesh has few very large
spherical sheets whose local curvature is relatively low, and the sheets pro-
duced via dicing are copies of this sheet still maintaining the relatively low
curvature of the large spherical sheet.

5 OPEN PROBLEMS

In the course of preparing this survey of hexahedral meshing constraints and
evaluating existing algorithms based on these constraints, several questions
arose that remain open problems in hexahedral mesh generation. We list some
of these questions below:

• Is it possible to develop an algorithm which rearranges mesh
topology to improve geometric quality of the sheets? Current
smoothing algorithms modify the placement of nodes within a mesh in
order to improve the quality of the mesh without altering the mesh topol-
ogy (that is, smoothing algorithms do not change the connectivity of an
element with adjacent elements). Mesh flipping algorithms exist which re-
arrange hexahedral mesh topology [3, 4, 58]. Typically, these algorithms
perform a ‘flip’ operation, and then compare the quality of the meshes
before and after the operation [21]. If the operation tends to reduce cur-
vature of the sheet, for example, then several flip operations strategicall
performed in succession may possibly improve the quality of the mesh be-
yond what is possible with normal smoothing operations. Is it possible to
‘drive’ these flip operations utilizing geometric information from the sheets
to realize dramatic improvements in overall mesh quality?

• Assuming all topologic constraints are satisfied within a mesh,
does there always exist an untangled solution for that mesh?
Current mesh smoothing and optimization algorithms, including mesh un-
tangling algorithms are based on optimization algorithms for finding local
extrema. Assuming that all topologic criteria for a hexahedral mesh have
been satisfied, what are the conditions which prevent mesh untangling? Is
it possible to prove that only tangled solutions exist for some mesh topolo-
gies and geometries using global optimization algorithms? Assuming that a
mesh with a tangled solution exists, is it possible to show that the tangling
is caused by boundary effects? Can the boundary effects be mitigated with
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additional algorithms which may change the mesh topology but improve
the geometry of the sheets?

• Is it possible to calculate ranges of potential element quality for
a mesh given a mesh topology and a fixed boundary? Or, in other
words, given two mesh topologies for a given geometry, is it possible to
show that one mesh topology is likely to have higher quality after opti-
mization than the other mesh topology?

• Is it possible to determine a minimal set of sheets necessary to
hexahedrally mesh a given geometry? Existing research into hexahe-
dral refinement algorithms [60, 18] coupled with algorithms for generating
coarse meshes, may offer an alternative method for hexahedral mesh gen-
eration. Utilizing a minimal set of sheets necessary for a given geometry, it
may be possible to perform the complex calculations necessary to obtain
an initial coarse mesh of a geometry, then utilize the refinement algorithms
to obtain the final mesh with desired sizing characteristics. What is the
fewest number of hexahedral elements necessary to decompose a given
geometry?

• Is it possible to extend any current hexahedral meshing algo-
rithm to incorporate more implicitly constraint-satisfying meth-
ods to mesh a significantly larger collection of geometric models?
In the previous section, we discussed possible extensions to existing algo-
rithms which could be incorporated to dramatically extend the class of
geometries to which these algorithms apply. Extension of these algorithms
remains an open area for development.

• For a given hexahedrally meshed geometry, is it possible to iden-
tify elements contained within this mesh that will be present in
any hexahedral mesh applied to that same geometry? Assuming
that each mesh for a given geometry must satisfy the hexahedral mesh
constraints outlined in this paper, can we identify the elements that must
be present in all meshes of that same geometry?

6 CONCLUSION

A thorough understanding of the constraints associated with hexahedral mesh
generation may provide the insight necessary to dramatically reduce the time
required to generate hexahedral meshes for use in numerical analyses. Due to
the difficulty and complexity of generating hexahedral meshes, however, tetra-
hedral meshes are often the only practical means available when performing
numerical analysis.

In this paper, we have outlined many of the necessary constraints for gen-
erating a hexahedral mesh as derived from the dual representation of a hexa-
hedral mesh. The constraints were classified as topology, boundary, and geo-
metric, or quality, constraints, where topology defines how sheets are allowed
to interact with one another, boundary defines how sheets capture geometric
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features of the geometry, and geometric, or quality, defines interactions and
conformationsthat are necessary to avoid element inversions and maintain
high hexahedral element quality.

By incorporating methods to satisfy ignored, or overlooked, constraints in
existing hexahedral mesh generation algorithms, it is be possible to extend the
class of geometries for which these algorithms may be applied. Several existing
algorithms for satisfying individual constraints are also highlighted, and it is
shown how these algorithms satisfy individual constraints to compatibly mesh
a solid with hexahedral elements. We have also listed a series of open problems
in relation to these constraints for which future research may provide valuable
insights for hexahedral mesh generation.
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